Документ подписан простой электронной подписью

Информация о владельце: ФИО: Агаф МИНИ СТЕРСИТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Должно Едеральное образовательное учреждение

вы сшего образования

Дата подписания: 12.04.2024 17:24:02

ВЫСШЕГО ОБРАЗОВАНИЯ
УНИКАЛЬНЫЙ ПРОГРАММИЬЙ КЛЮЧМОСКОВСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»
ЧЕБОКСАРСКИЙ ИНСТИТУТ (ФИЛИА I) МОСКОВСКОГО ПОЛИТЕХНИЧЕСКОГО УНИВЕРСИТЕТА

Кафедра транспортно-энергетических систем

СПЕЦРАЗДЕЛЫ ТОЭ

(наименование дисциплины)

Методические указания по выполнению курсовой работы

Направление	13.03.02 « <u>Электроэнергетика и</u>				
подготовки	<u>электротехника</u> »				
	(код и наименование направления				
	подготовки)				
Направленность					
подготовки	« <u>Электроснабжение</u> »				
	(наименование профиля подготовки)				
Квалификация					
выпускника	Бакалавр				
Форма обучения	очная и заочная				

Методические указания разработаны в соответствии с требованиями ФГОС ВО по направлению подготовки 13.03.02 «Электроэнергетика и электротехника»

Автор <u>Лепаев Александр Николаевич, к.т.н., доцент кафедры транспортно-</u>
энергетических систем

ФИО, ученая степень, ученое звание или должность, наименование кафедрь

Методические рекомендации одобрены на заседании кафедры «Транспортно-энергетические системы»

(протокол № 07 от 16.03.2024 г.).

СОДЕРЖАНИЕ

введение	4
1. ЦЕЛИ И ЗАДАЧИ КУРСОВОЙ РАБОТЫ	
2. ЗАДАНИЕ НА КУРСОВУЮ РАБОТУ	5
3. КРАТКИЕ ТЕОРЕТИЧЕСКИЕСВЕДЕНИЯ	12
4. РЕКОМЕНДАЦИИ ПО ОФОРМЛЕНИЮ КУРСОВОЙ РАБОТЫ	. 13
КРИТЕРИИ ОЦЕНКИ ЗНАНИЙ ПРИ ЗАЩИТЕ КУРСОВОЙ РАБОТЫ	15
СПИСОК ЛИТЕРАТУРЫ	. 16

ВВЕДЕНИЕ

Курсовая работа по дисциплине «Спецразделы ТОЭ» — предназначена для студентов очной и заочной формы обучения инженерно-технических специальностей и является завершающим этапом изучения курса.

Предлагаемая курсовая работа содержит задания на основы теории электромагнитного поля в макроскопическом представлении, базирующейся на уравнениях электродинамики, сформулированных Максвеллом.

Важность изучения электромагнитных полей следует из того, что без расчета поля невозможно проектирование самых разнообразных электромагнитных устройств, включая мощные электрические машины и аппараты с полями промышленной частоты, микроминиатюрные устройства радиоэлектроники с полями высоких и сверх высоких частот, а также установки высокого напряжения.

Несмотря форм на различие И назначений, все современные электротехнические устройства имеют общую часть – электромагнитную систему, предназначенную для преобразования электромагнитной энергии в другие виды. Свойства и рабочие характеристики электротехнических устройств напрямую зависят от распределения электромагнитного поля в их электромагнитной системе, именно поэтому важно при проектировании уметь рассчитывать оптимизировать электромагнитное поле. И электромагнитных полей в реальных электромагнитных системах чрезвычайно сложны и, как правило, требуют специальной подготовки.

1. ЦЕЛИ И ЗАДАЧИ КУРСОВОЙ РАБОТЫ

Предлагаемая курсовая работа является завершающим этапом изучения курса и преследует следующие цели:

- приобретение практических навыков теоретического анализа электрической цепи с усилительными элементами;
- закрепление, углубление и расширение знаний по основным разделам курса;
- применение компьютерных технологий для расчета и анализа электрических цепей.

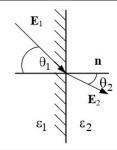
Задание на курсовую работу каждый студент получает индивидуально и в ходе ее выполнения должен самостоятельно осмыслить поставленную задачу и найти пути ее решения, применяя знания, полученные на других видах занятий.

2. ЗАДАНИЕ НА КУРСОВУЮ РАБОТУ

Задания для курсовой работы составляются преподавателем, который ведет данную дисциплину, и утверждаются кафедрой.

Номер варианта курсовой работы выбирается обучающимся по последней цифре в шифре номера зачетной книжки. Так, например, если последняя цифра шифра 1, то обучающийся выполняет курсовую работу по варианту № 1.

По этому номеру и по таблице вариантов (таблица 1) находятся задачи, которые должен решить студент.

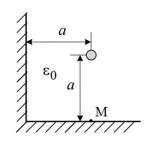

Таблица 1

Задачи	Вариант									
	1	2	3	4	5	6	7	8	9	10
	1	2	3	4	5	6	7	8	9	10
	11	12	13	14	15	16	17	18	19	20
	26	27	28	29	30	21	22	23	24	25

ЭЛЕКТРОСТАТИКА

Запишите уравнение взаимосвязи между объемной плотностью свободного заряда и потенциалом

2


Найти угол θ_2 под которым линии напряженности однородного электрического поля выходят из стекла с диэлектрической проницаемостью ϵ_1 =7 в трансформаторное масло с проницаемостью ϵ_2 =2,5, если угол θ_1 =35°.

3 Объемный заряд распределен равномерно с плотностью ρ внутри непроводящей сферы радиусом *R*.

Определить напряженность поля вне сферы на расстоянии r от ее центра, если среда, окружающая сферу — воздух.

4

5

Длинный цилиндрический провод с линейной плотностью заряда т расположен в воздухе внутри прямого двугранного угла параллельно его граням.

Найти напряженность поля в точке M, расположенной на нижней грани угла под проводом.

Плоский конденсатор емкостью C=50 пФ со слюдяным диэлектриком, пробивная прочность которого $E_{\rm npo6}$ =800 кВ/см, ($\varepsilon_{\rm c}$ =6,28) должен быть рассчитан на рабочее напряжение 20 кВ и четырехкратный запас прочности по напряженности.

Определить толщину диэлектрика и площадь пластин.

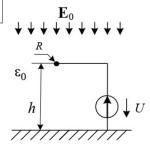
6

В воздухе создано электрическое поле, потенциал которого зависит только от координаты x декартовой системы координат $\phi = 5x^2 + 12x$ В.

Найти объемную плотность свободных зарядов в этом поле.

7

Напряженность равномерного электрического поля в масле (ε_1 =2,5) равна E_1 =2000 В/см и составляет с нормалью к поверхности фарфоровой пластины (ε_2 = =7,5) угол θ_1 =30°.


Найти напряженность поля в фарфоре.

8

Объемный заряд распределен равномерно внутри проводящей сферической оболочки радиусом R с плотностью ρ .

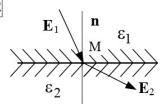
Определить напряженность поля E вне оболочки на расстоянии r от ее центра, если проницаемость среды ϵ_a , а оболочка изолирована.

9

Одиночный протяженный провод радиусом R=1 см на высоте h=5 м над поверхностью земли находится под напряжением U=11 кВ в однородном поле грозовой тучи $E_0=2$ кВ/м.

Найти линейную плотность заряда провода.

10


Определить емкость цилиндрического конденсатора с радиусами электродов R_1 =1 см, R_2 =2 см и длиной l=10 см. Диэлектрическая проницаемость диэлектрика ϵ =2,5. Искажением поля у краев конденсатора пренебречь.

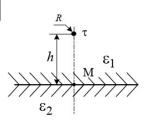
11

В воздухе создано плоскопараллельное электрическое поле, вектор напряженности которого в декартовой системе координат изменяется по закону $\mathbf{E} = \mathbf{i} 4x^2 + \mathbf{j} 3y$ кВ/м.

Найти дивергенцию вектора E в точке, принятой за начало координат (x=0; y=0).

12

В точке М со стороны диэлектрика с проницаемостью ε_1 =2,5 составляющие вектора напряженности плоскопараллельного поля E_{1n} =80 В/см и E_{1x} =30 В/см.


Найти напряженность поля в этой точке со стороны диэлектрика ε_2 =5.

13

Две бесконечно длинные нити, заряженные разноименно с плотностью $\tau = 10~$ мкКл/м, находятся в воздухе на расстоянии 1м друг от друга.

Найти напряженность поля в точке, лежащей на линии, соединяющей оси и равноудаленной от них.

14

Над плоской границей раздела двух диэлектриков с относительными проницаемостями ε_1 =1 и ε_2 =7 на высоте h=3 м подвешен тонкий провод радиусом R=1 см с линейным зарядом τ =10⁻⁹ кл/м.

Определить поверхностный плотность заряда под проводом в точке M.

15

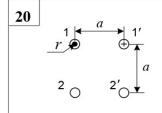
Определить погонную емкость C_0 двухпроводной линии в среде с относительной диэлектрической проницаемостью ε =2, если радиус проводов r=2 мм, а расстояние между их осям d=50 см.

СТАЦИОНАРНОЕ МАГНИТНОЕ ПОЛЕ

Поле вектора **B** в декартовых координатах задано выражением: $\mathbf{B} = \mathbf{i} C \sin y$, где C – постоянная.

Определить векторный потенциал поля.

Вектор магнитной индукции \mathbf{B}_1 в воздухе (μ_1 =1) составляет с нормалью к границе раздела сред угол θ_1 =45°.

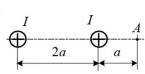

Определить угол θ_2 , под которым вектор \mathbf{B}_2 выходит в среду с магнитной проницаемостью μ_2 =10.

Найти величину тока двухпроводной линии, при котором напряженность магнитного поля в точке A равна H=6,37 A/м. Расстояние a=10 см.

 R_1 R_2

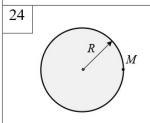
Плотность тока в цилиндрическом проводе радиусом R=3 см, имеющим цилиндрическую полость радиусом r=1 см, постоянная и равна $\delta=4$ $A/мм^2$.

Определить напряженность магнитного поля H на оси полости, если она смещена от оси цилиндра на a=1,5 см.

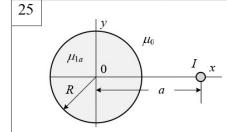

Определить взаимную индуктивность на единицу длины двух двухпроводных линий, расположенных согласно рис, полагая радиусы проводов r и расстояние a известными (r << a).

21 22 $\mathbf{B}_2 \mathbf{h}_2 \mathbf{n}$ μ_1 23 2a

Определите минимальную разность скалярных магнитных потенциалов между точками а и в в магнитном поле линейного провода с током *I*=30 А.


> Линии магнитной индукции \mathbf{B}_1 в ферромагнитной среде (μ_1 =100) составляют угол θ_1 =60° по отношению к нормали.

> Найти угол θ_2 , под которым линии магнитной индукции ${\bf B}_2$ выходят в воздух.


Магнитное поле создано токами одного направления в длинных параллельных проводах.

Определить напряженность магнитного поля в точке А.

Плотность тока в медном проводе радиусом R=1см постоянная и равна $\delta=1$ А/мм².

Определить векторный магнитный потенциал в точке M, принимая его значение на оси провода равным нулю.

Проводник с током I = 10 A проходит в воздухе параллельно оси длинного цилиндра (μ_1 =50) радиусом R=5 см на расстоянии a=10 см от нее.

Определить силу притяжения провода к цилиндру на единицу длины провода.

3. КРАТКИЕ ТЕОРЕТИЧЕСКИЕСВЕДЕНИЯ

Теоретические сведения должны приводиться по задачам согласно своему варианту.

Основные уравнения электростатики

Электростатическое поле описывается дифференциальными уравнениями Максвелла в предположении, что векторы поля не зависят от времени и отсутствуют токи проводимости:

$$rot = E0;$$
 (2.1)

$$\operatorname{div}\mathbf{D}\rho;$$
 (2.2)

$$\mathbf{\mathfrak{D}}\varepsilon_{a}\mathbf{E}.\tag{2.3}$$

К этим уравнениям полезно к добавить их интегральные аналоги:

$$\oint \mathbf{E}d\mathbf{l} = 0; \tag{2.4}$$

$$\oint_{S} \mathbf{D}d\mathbf{S} = q.$$
(2.5)

Из уравнений (2.1) и (2.2) следует, что электростатическое поле является потенциальным, а линии поля (векторов **D** и **E**) имеют истоки и стоки, начинающиеся и заканчивающиеся на зарядах. Иными словами, существует скалярная функция, названная потенциалом

$$\mathbf{E} = -\operatorname{grad}\varphi. \tag{2.6}$$

Уравнение (2.6) определяет функцию фс точностью до постоянной. Физический смысл потенциала- работа, которую совершают силы электрического поля при перемещении заряда q из точки 1 в точку 2 против сил поля

$$A = -\frac{2}{q} \int \mathbf{E} d\mathbf{l} = -\frac{2}{q} \int -\operatorname{grad} \varphi d\mathbf{l} = q(\varphi_2 - \varphi_1).$$

Если взять q=1 Кл, получим, что работа по перемещению заряда из точки 1 в точку 2 равна разности потенциалов в конечной и начальной точках пути. При этом работа не зависит от формы пути перемещения заряда. При решении конкретных задач сначала находят потенциал, а затем определяют вектор \mathbf{E} , полагая, что потенциал бесконечно удаленной точки равен нулю. Единица измерения вольт. Для однородной среды из (1.49) получаем уравнение Пуассона

$$\nabla^2 \varphi = -\rho/\epsilon_a. \quad (2.7)$$

если ρ =0, уравнение Пуассона переходит в уравнение Лапласа

Оператор Лапласа $\nabla^2 = \Delta$ (лапласиан) в прямоугольной системе к ординат записывается

$$\Delta = \frac{\partial^2}{\partial_{x^2}^2} + \frac{\partial^2}{\partial_{y^2}^2} + \frac{\partial^2}{\partial_{z^2}^2}$$
 (2.9)

Уравнения Лапласа и Пуассона как уравнения в частных производных допускают бесчисленное множество решений. Выбрать правильное решение позволяет теорема единственности.

4. РЕКОМЕНДАЦИИ ПО ОФОРМЛЕНИЮ КУРСОВОЙ РАБОТЫ

Оформление курсовой работы предусматривает написание пояснительной записки и подготовку материалов, иллюстрирующих доклад на защите. Курсовая работа оформляется в соответствии с требованиями государственных международных И стандартов, действующих на территории Российской Федерации, также соответствующих стандартов Политеха.

Пояснительная записка должна состоять из обложки (титульного листа), задания на курсовую работу, основного текста, поясняющего сделанную работу и списка использованной литературы и выполняться на листах формата A4 со штампом. Текст пояснительной записки набирается на компьютере в редакторе Microsoft Word.

При оформлении работы следует руководствоваться следующими правилами:

- 1. Рисунки, графики схемы, символы, размерности физических величин выполняются в соответствии с требованиями ГОСТ.
- 2. Расчет каждой искомой величины следует выполнять сначала в общем виде, а затем в полученную формулу подставить числовые значения и привести окончательный результат с указанием единицы измерения. Решение задач не следует перегружать приведением всех алгебраических преобразований и расчетов.
- 3. Промежуточные результаты расчетов и конечный результат должны быть ясно выделены из общего текста.
- 4. В ходе решения задачи не следует изменять однажды принятые направления токов, напряжений, наименование узлов и т.д. При решении задачи различными методами одна и та же величина должна обозначаться одним и тем же буквенным символом.
- 5. Курсовая работа должна сканироваться и прикрепляться в LMS https://lms.mospolytech.ru и в личный кабинет студента http://students.polytech21.ru/login.php

Пример оформления титульного листа, листа задания на курсовую работу и бланков со штампами приведены в ниже.

Обозначения на титульном листе XXX - номер группы, NNN - последние три цифры зачетной книжки.

Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«МОСКОВСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» ЧЕБОКСАРСКИЙ ИНСТИТУТ (ФИЛИАЛ) МОСКОВСКОГО ПОЛИТЕХНИЧЕСКОГО УНИВЕРСИТЕТА

Кафедра транспортно-энергетических систем

ЗАДАНИЕ

на курсовую работу по дисциплине «Спецразделы ТОЭ»

BA	РИАНТ -
Студент	Группа
Консультант	
1 T	· •
1. Тема курс	совой работы
«ОСНОВЫ ТЕОРИИ ЭЛЕКТ	РОМАГНИТНОГО ПОЛЯ»
2. Основно	е содержание:
1. Краткие теоретические сво	едения
2. Расчет заданий	
3. Список литературы	
3. Требования	к оформлению
Пояснительная записка долж	кна быть оформлена в редакторе
Microsoft Word в соответствии с тре	
Руководитель	

КРИТЕРИИ ОЦЕНКИ ЗНАНИЙ ПРИ ЗАЩИТЕ КУРСОВОЙ РАБОТЫ

Защита курсовой работы является завершающим этапом данного вида занятия и служит формой проверки выполнения студентами заданий к курсовой работе и уровня усвоения учебного материала.

Защита проводится в соответствии с графиком до начала экзаменационной сессии и принимается комиссией, члены которой задают вопросы по существу работы и выносят решение об оценке.

Оценка «**отлично**» выставляется студенту, обнаружившему всесторонние систематические и глубокие знания материала по курсовой работе, умение свободно выполнять задания.

Оценка «**хорошо**» выставляется студенту, показавшему систематический характер знаний по теме курсовой работы.

Оценка «удовлетворительно» выставляется студенту, допустившему погрешности при выполнении курсовой работы, но обладающему необходимыми знаниями для их устранения.

Оценка «**неудовл.**» выставляется студенту, обнаружившему пробелы в знаниях основного материала, допустившему принципиальные ошибки в выполнении курсовой работы.

СПИСОК ЛИТЕРАТУРЫ

- 1. Демирчян К.С., Нейман Л.Р., Коровкин Н.В., Чечурин В.Л. Теоретические основы электротехники. Том 3. Спб.: Питер, 2003. 377с.
- 2. Бессонов Л.А. Теоретические основы электротехники. Электромагнитное поле. М.: Высш. школа, 1986. 263 с.
- 3. Вольман В.И., Пименов Ю.В., Техническая электродинамика. М.: «Связь», 1971.-487 с.
- 4. Сборник задач и упражнений по теоретическим основам электротехники / Под редакцией П.А. Ионкина. М.: Энергоиздат, 1982. 768 с.
- 5. Теоретические основы электротехники. Том 2. Нелинейные цепи и основы теории электромагнитного поля / Под редакцией П.А. Ионкина. М.: «Высш. школа», 1976. 383 с.
- 6. Сборник задач по теоретическим основам электротехники: Учеб. пособие для энерг. и приборост. спец. вузов / Под редакцией Л.А. Бессонова. М.: Высш. школа. 1988.-543 с.
- 7. Исаев Ю.Н., Купцов А.М. Электротехника. Решение задач в системе MathCAD. Учеб. пособие. Томск: Изд-во Томского политехнического университета, 2009. 126 с.