Документ подписан простои электронной подписью Информация о ФЕДЕРАЛЬНОЕ ГОСУДАРСТ ВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

Должность: директор филиала «МОСКОВСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Дата подписания НЕБОЖСАРСКИЙ ИНСТИТУТ (ФИЛИАЛ) МОСКОВСКОГО ПОЛИТЕХНИЧЕСКОГО УНИВЕРСИТЕТА

Уникальный программный ключ:

2539477a8ecf706dc9cff164bc411eb6d3c4ab06

Кафедра транспортно-энергетических систем

Теория механизмов и машин

(наименование дисциплины)

Методические указания по выполнению курсовой работы

Направление подготовки

15.03.05 Конструкторско-технологическое обеспечение машиностроительных производств

(код и наименование направления подготовки)

Квалификация выпускника

<u>бакалавр</u>

Направленность (профиль) образовательной программы

Технология машиностроения

(наименование профиля подготовки)

Форма обучения

очная, заочная

Методические указания разработаны в соответствии с требованиями ФГОС по направлению подготовки

15.03.05 Конструкторско-технологическое обеспечение машиностроительных производств

Авторы:

Никулин Игорь Васильевич,

доцент, к.т.н. кафедры транспортно-энергетических систем

ФИО, ученая степень, ученое звание или должность, наименование кафедры

Методические указания одобрены на заседании кафедры_ Транспортно-энергетических систем

наименование кафедры

(протокол № 07 от 16.03.2024г).

СОДЕРЖАНИЕ

Введение	4
Содержание работы	4
1. Структурный анализ	5
2. Кинематический анализ	7
2.1. Построение кинематической схемы	7
2.2. Определение скоростей	8
2.3. Определение ускорений	11
3. Силовой расчет (динамический анализ) механизма	15
3.1. Расчет структурной группы 2 класса 2 вида (звенья 4, 5)	16
3.2. Расчет структурной группы 2 класса 1 вида (звенья 2, 3)	18
3.3. Расчет ведущего звена	19
3.4. Определение уравновешивающей силы методом Жуковского	19
Оформление курсовой работы	21
1.1. Основные требования	21
1.2. Построение таблиц	22
1.3. Формулы и расчеты	22
1.4. Библиографическое описание литературы	23
Вопросы для подготовки к защите курсовой работы	25
Припожение-солержание графической части	26

Введение

В соответствии с требованиями образовательных стандартов студенты ряда специальностей и направлений по дисциплине «Теория механизмов и машин» должны выполнить курсовую работу.

Курсовая работа предусматривает выполнение 1 листа графических построений на формате A-1 или A-2 и расчетно-пояснительной записки на формате A-4 объемом до 15 страниц.

Работа включает 3 раздела:

- 1. Структурный анализ механизма.
- 2. Кинематический анализ.
- 3. Силовой расчет (кинематическое исследование).

Содержание работы

- 1. Структурный анализ определение степени подвижности и класса механизма (в записке).
- 2. Кинематический анализ графоаналитическим методом построение кинематической схемы механизма и плана скоростей и ускорений.
- 3. Силовой расчет определение реакций в кинематических парах и уравновешивающей силы графоаналитическим методом и методом Жуковского.

Номер задания курсовой работы выбирается по предпоследней цифре шифра студента, а номер варианта – по последней.

Методические указания по выполнению работы.

1. Структурный анализ.

При структурном анализе определяют степень подвижности и класс механизма.

Степень подвижности плоских механизмов определяют по формуле П.Л. Чебышева

$$W = 3n - 2 p_5 - 1 p_4$$

где, n — число подвижных звеньев;

 p_5 – количество кинематических пар 5-го класса (низших);

 p_4 – количество пар 4-го класса (высших).

Класс механизма определяется наивысшим классом структурной группы, входящей в состав механизма.

Для выполнения структурного анализа в пояснительной записке строится структурная схема механизма, которая после выделения основной цепи – ведущее звено со стойкой (цепь I класса) разделяется на структурные группы. После этого записывается формула строения механизма и определяется класс.

Пример: Провести структурный анализ плоского механизма, изображенного на рис. 1.

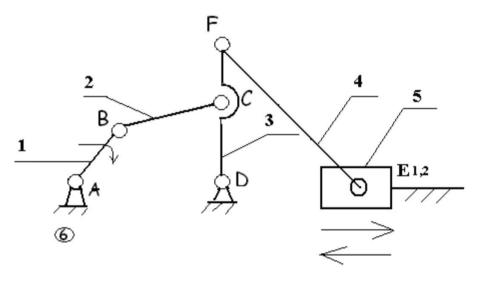


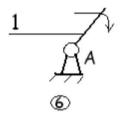
Рис. 1

Определяем степень подвижности:

W=
$$3n - 2p_5 - 1p_4$$

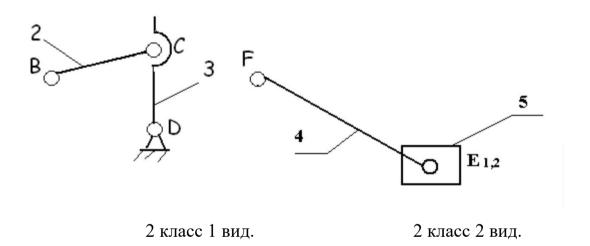
n = 5 – число подвижных звеньев;

 $p_5 = 7$ – число пар 5-го класса (A,B,C,D,F,E,E);


 $p_4 = 0$ – число пар 4-го класса.

$$W = 3 \cdot 5 - 2 \cdot 7 - 1 \cdot 0 = 15 - 14 = 1$$

Следовательно, для работы механизма необходимо иметь одно ведущее звено (один привод).


Определяем класс механизма.

Отбрасываем основную цепь – звенья 1 и 6 (І кл.)

1 класс

Оставшуюся группу звеньев разделяем на 2 структурные группы 2 класса 1 и 2 видов.

Записываем формулу строения механизма

$$I(1,6) \to II 1$$
 вид $(2,3) \to II 2$ вид $(4,5)$.

В целом данный механизм 2 класса, т.к. наивысший класс структурной группы – второй.

2. Кинематический анализ.

При кинематическом анализе находят положение всех звеньев при заданном положении ведущего звена (построение кинематической схемы

механизма), определяют скорости и ускорения отдельных точек и угловые скорости и ускорения звеньев.

Кинематическая схема строится методом засечек. Кинематические параметры чаще всего определяют графоаналитическим методом (метод планов скоростей и ускорений).

Рассмотрим порядок кинематического анализа на примере механизма изображенного на рис. 1 используем исходные данные:

 x_1 – координата шарнира D, м.

 $l_{\rm AB}$ – длина кривошипа м.

 $l_{\rm BC}$ – длина шатуна ВС, м.

 $l_{\rm CD}$ – длина коромысла CD, м.

 $l_{\rm CF}$ – длина рычага коромысла м.

 l_{FE} – длина шатуна FE, м.

 ω_1 – угловая скорость кривошипа, с⁻¹.

 φ_1 – обобщенная координата, определяющая положение ведущего звена, град.

Центры масс звеньев 2.3 и 4 лежат на их серединах, центра масс кривошипа совпадает с центром шарнира A, центр масс ползуна 5 совпадает с центром шарнира E.

2.1. Построение кинематической схемы (рис. 1а приложения)

В левом верхнем углу формата строится кинематическая схема механизма

в масштабе
$$\mu_{\scriptscriptstyle I} = l_{\scriptscriptstyle AB}$$
 / $\overline{\rm AB}$ (м/мм)

где: l_{AB} – длина кривошипа, (м),

Вычисляются отрезки, изображающие размеры остальных звеньев, координаты отдельных точек и методом засечек находят положение их:

$$\overline{BC} = l_{BC} / \mu_{l (MM)}. \quad \overline{CD} = l_{CD} / \mu_{l (MM)}.$$

$$\overline{CF} = l_{CF} / \mu_{l (MM)}. \quad \overline{FE} = l_{FE} / \mu_{l (MM)}.$$

$$\overline{X} = X / \mu_{l (MM)}.$$

Вначале радиусом, равных длине отрезка \overline{AB} из центра шарнира «А» проводится окружность. От заданного направления оси отсчета обобщенной координаты откладывается угол ϕ_1 и проводится отрезок AB. От точки A по горизонтали откладывается отрезок \overline{X} и находится т. D. Из точки «В» радиусом, равным длине отрезка \overline{BC} проводится часть дуги окружности, а из точки «D» - часть дуги радиусом, равным длине отрезка \overline{CD} . Точки их пересечения и будет точкой «С». Далее откладывается отрезок \overline{CF} ; из точки «F» радиусом, равным отрезку \overline{FE} , делается засечка на горизонтальной направляющей. Тем самым найдено положение центра шарнира Е. В результате решена первая задача анализа — найдены положения всех звеньев механизма при заданном положении ведущего (входного) звена. В соответствии с координатами, показываются положения центров масс звеньев и проставляются номера звеньев.

В рассматриваемом примере центр масс кривошипа l совпадает с центром шарнира A, центр масс ползуна 5 совмещается с центром шарнира E, а центры масс звеньев 2, 3 и 4 лежат на их серединах.

2.2. Определение скоростей.

Скорость т. В кривошипа $v_B = \omega_1 \times l_{AB} (^{MC_{-1})}$.

Для точки С, являющейся общей для звеньев 2 и 3, составляется и решается система векторных уравнений:

где: $\overline{\mathcal{V}_B}$ — вектор скорости точки B, известный по величине и направлению — перпендикулярно оси кривошипа AB в сторону его вращения (подчеркнут двумя чертами);

 $\upsilon_{\in B}$ — вектор относительной скорости точки С шатуна по отношению к точке В, известный по направлению — перпендикулярно оси шатуна ВС (подчеркнут одной чертой);

 $oldsymbol{ar{U_D}}$ — вектор скорости точки D. Так как точка D неподвижна, то $oldsymbol{v_D}$ =0;

 u_{CD}^{-} — вектор относительной скорости точки С коромысла по отношению к точке D, известный по направлению — перпендикулярно оси коромысла CD.

Графическое решение (рис. 16 приложения) приведенной выше системы векторных уравнений называют планом скоростей. Предварительно выбирают масштаб плана скоростей.

$$\mu_{v} = v_{B} / \overline{pb} (Mc^{-1}/MM)$$

где, U_{B} – скорость точки B, (мс⁻¹),

 \overline{pb} – отрезок (вектор) произвольной длины, (мм).

Отрезок \overline{pb} можно взять в пределах 50-80 мм.

Пусть к примеру $U_B = 1,42 \text{ мс}^{-1}$.

Примем
$$\overline{pb} = 71$$
мм. Тогда $\mu_{\text{\tiny o}} = 1,42 / 71 = 0,02 (мс^{-1}/$ мм).

Итак, проводим вектор pb перпендикулярно оси кривошипа AB по направлению его вращения. Через точку «b» проводим линию, перпендикулярную оси шатуна BC. Так как v_D =0 , то точка «d» совмещается с полюсом «p» и через точку «d» или через полюс «p» проводим линию перпендикулярную оси коромысла CD. Точки пересечения последних двух линий дает точку «C».

 ${\rm C}$ плана скоростей: $v_C = \overline{pb} \times \mu$, $v_{CB} = \overline{bc} \times \mu$, $v_D = v = \overline{dc} \times \mu$.

Скорость точки F коромысла определяется по правилу подобия.

$$\frac{CD}{DF} = \frac{\overline{cd}}{\overline{df}} \Rightarrow \overline{df} = \frac{DF \times \overline{cd}}{CD}$$
(MM).

Проводим отрезок \overline{df} , сходственный с отрезком DF на схеме механизма. Тогда $\upsilon_F = \overline{pf} \times \mu_{\upsilon}$.

Для нахождения скорости точки E решается система векторных уравнений

$$\begin{bmatrix}
\upsilon = \upsilon + \upsilon & \bot FE \\
\dot{\dot{c}}\dot{\dot{c}} & \underline{E}
\end{bmatrix}$$

Здесь:

 $\frac{\upsilon}{F}$ — вектор скорости точки F известной по величине и направлению (см. точку «f» на плане скоростей);

 v_{EF} — вектор относительной скорости точки «Е» шатуна 4 по отношению к точке «F», известный по направлению — перпендикулярно оси шатуна FE;

 v_{E_6} — скорость точки E, принадлежащей стойке (звено 6) и совпадающей в данный момент с точкой «E» ползуна 5. Так стойка 6 звено неподвижное, то \bar{v}_{E_6} = 0 и на плане скоростей точки «e₆» совмещается с полюсом «P»;

 v_{EE_6} — вектор относительной скорости точки «Е» ползуна по отношению к стойке, известный по направлению — вдоль направляющей. В нашем примере — по горизонтали.

Достраиваем план скоростей. Для этого через точку «f» проводим перпендикуляр к оси шатуна FE до пересечения с горизонталью. Получаем точку «e». Тогда $v_E = pe \times \mu_v$.

Скорость точек центров масс звеньев 2, 3 и 4 находим по правилу подобия. Так как центры масс этих звеньев лежат на их серединах, то и на плане скоростей точки S_2 , S_3 и S_4 лежат на серединах соответствующих отрезков.

Тогда

$$U_{S2} = p \xrightarrow{2} \times \mu_{\upsilon}$$
 $U_{S3} = \frac{S}{p \xrightarrow{3}} \times \mu_{\upsilon}$ $U_{S4} = \frac{S}{p \xrightarrow{4}} \times \mu_{\upsilon}$

Угловые скорости звеньев

$$\omega_3 = \frac{U_{CB}}{l_{BC}} = \frac{\overline{bc} \times \mu_{\nu}}{l_{BC}} \quad (c^{-1})$$

$$\omega_3 = \frac{\upsilon_{CD}}{l_{CD}} = \frac{dc \times}{l_{CD}} \qquad (c^{-1})$$

$$\omega_{4} = \frac{\upsilon_{EF}}{l_{FE}} = \frac{ef \times}{l_{FE}} \frac{(c^{-1})}{(c^{-1})}$$

3десь: \overline{bc} , \overline{dc} , \overline{ef} - отрезки на плане скоростей, мм. $\overline{\mathit{IBC}}$, $\overline{\mathit{ICD}}$, $\overline{\mathit{FE}}$ - длины звеньев, м.

2.3. Определение ускорений.

Так как кривошип вращается равномерно, то полное ускорение точки В равно нормальному (центростремительному) ускорению

$$a_B = a_B = \omega_1^2 \times l_{AB} (Mc^{-2})$$

Для определения ускорения точки «С» решается графически система векторных уравнений

 ${m Q}_{{m G}_B}^{-}$ — вектор ускорения точки В кривошипа, известный по величине и на правтинию + в поль в ривошипа от «В» к «А»;

 \overline{a}^{n}_{C} вектор нормальной составляющей (центростремительное ускорение) относительного ускорения точки «С» шатуна по отношению к точке «В», известный по величине и направлению – вдоль оси шатуна от «С» к «В»; $a_{CB}^n = \omega_2^2 \cdot l_{BC}$

 $\overline{\mathbf{q}}_{_{CB}}^{_{\mathrm{T}}}$ — вектор тангенциальной составляющей относительного ускорения точки «С» по отношению к точке «В», известный по направлению – перпендикулярно ВС;

 \mathbf{e}_{D} – вектор ускорения точки D. Так точка D механизма неподвижна, то $d_{D} = 0;$

 $\overline{d}_{\scriptscriptstyle CD}^{\scriptscriptstyle n}$ — вектор нормальной составляющей (центростремительное ускорение) относительного ускорения точки «С» коромысла по отношению к

точке «D», известный по величине и направлению - вдоль оси коромысла от «С» к «D»; $a^n_{CD} = \omega_3^2 \cdot l$.

 $a^{\scriptscriptstyle \mathrm{T}}_{\scriptscriptstyle CD}$ — вектор тангенциальной составляющей относительного ускорения точки «С» по отношению к точке «D», известный по направлению — перпендикулярно CD;

Строим план ускорений в масштабе $\mu_a = \alpha_B / \pi \overline{b}$ (мс⁻² / мм), (рис. 1в приложения). К примеру: $a_B = 12.8$ мс⁻². Изобразим это ускорение отрезком $\overline{n}\overline{b}$ = 64мм.

Тогла
$$\mu_a = 12.8 / 64 = 0.2 (\text{мc}^{-2} / \text{мм}).$$

Откладываем от полюса « π » отрезок π^b длиной 64 мм в направлении вдоль кривошипа AB от «В» к «А». Длина вектора нормального ускорения \overline{a}^n_{CB} будет $b^n_{-1} = a^n_{CB}/\mu_a$ (мм). Откладываем этот отрезок параллельно шатуну BC в направлении от C к B, а через точку n_1 проведем перпендикуляр к этому отрезку (направление \overline{a}^r_{CB}). Точку «d» совмещаем с полюсом « π », так как $b^n_{-1} = a^n_{CD}/\mu_a$ (мм). Проводим отрезок π^n_{-1} параллельно коромыслу CD в направлении от «С» к «D» и через точку « n_2 » - перпендикуляр к этому отрезку (направление \overline{a}^n_{CD}).

Точка пересечения направлений тангенциальных составляющих даёт точку «С».

Тогда $\mathcal{O}_{c} = \pi e \times \mu_{a}$ (мс-2). Здесь $\pi e -$ длина отрезка на плане ускорений. Тангенциальные составляющие относительных ускорений

$$a_{cB} = \overline{n_{c}} \times \mu_{a} \ : \ a_{cD} = \overline{n_{c}} \times \mu_{a} \ .$$

Ускорение точки F определим по графику подобия:

$$\frac{CD}{DF} = \frac{\overline{cd}}{\overline{df}} \Rightarrow \overline{df} = \frac{DF \times \overline{cd}}{CD}$$
(MM)

CD и DF – отрезки на кинематической схеме механизма,

 $\overline{cd}_{\mathsf{U}} = \overline{df}_{\mathsf{U}} - \mathsf{OTPe3kU}$ на плане ускорений .

$$a_F = \overline{\pi f} \times \mu_a$$
 (MC-2)

Для определения ускорения точки E решается система векторных ускорений

 $ar{a}_{\!\scriptscriptstyle F}$ — вектор ускорения точки F, известный по величине и направлению; $E = G_{\!\scriptscriptstyle F} + G_{\!\scriptscriptstyle E\!F} + G_{\!\scriptscriptstyle E\!F}$

 a_{EF}^{n} — вектор нормальной составляющей относительного ускорения точки Е по отношению к точке F, известный по направлению — вдоль шатуна от Е к F и по величине $a_{EF}^{n} = \omega_{4}^{2} \times l_{FE}$ ($^{MC_{-2}}$);

 $a_{E\!F}^{\scriptscriptstyle {\scriptscriptstyle T}}$ — вектор тангенциальной составляющей, известный по направлению — перпендикулярно FE;

 a_{E_6} — ускорение точки E, принадлежащей стойке (звену) 6 и совпадающей в данный момент с точкой E ползуна. Так стойка — звено неподвижное, то $a_{E_6}=0$;

 $\underline{q}_{EE_6}^{\kappa op}$ — вектор кориолисова ускорения. Так как ползун совершает только поступательное движение, то $\mathbf{Q}_{EE_6}^{\kappa op} = 0$;

 $\underline{d}_{EE_6}^r$ — вектор относительного (релятивного) ускорения, известный по направлению — вдоль оси направляющей. В нашем случае — по горизонтали.

Достраиваем план ускорений. Длина вектора нормального ускорения

$$\mathbf{a}_{EF}^{n}$$
 будет $\mathbf{h}_{3} = \frac{\mathbf{a}_{EF}^{n}}{\mu_{a}}$; (мм). Откладываем этот отрезок параллельно шатуну

FE в направлении от EкF, а через точку n_3 проводим перпендикуляр к этому отрезку (направление $\mathbf{d}_{EF}^{^{T}}$).Точку \mathbf{e}_6 совмещаем с полюсом $^{\pi}$ и через неё проведём горизонталь — направление $\mathbf{d}_{EE_6}^{^{T}}$.Тогда ускорение точки E:

$$a_E = \pi e \times \mu_a \pmod{Mc^{-2}}$$
; $a_{EF}^{\tau} = \overline{n}_3 e \times \mu_a \pmod{Mc^{-2}}$.

Ускорение центров масс звеньев 2, 3 и 4 находим по правилу подобия. Так как точки S_2 , S_3 , S_4 лежат на серединах звеньев BC, DF и FE, то и на плане ускорений эти точки должны лежать на серединах соответствующих отрезков. Тогда:

$$a_{S2} = \frac{S}{\pi_2} \times \mu_a$$
; $a_{S3} = \frac{\pi S}{3} \times \mu_a$; $a_{S4} = \frac{\pi S}{4} \times \mu_a$

Определяем угловые ускорения звеньев:

$$\mathcal{E}_{2} = \frac{\mathbf{Q}_{CB}^{\tau}}{\mathbf{l}_{BC}} = \frac{\mathbf{\underline{\Pi}_{1}e} \times \underline{\boldsymbol{\mu}}_{a}}{\mathbf{l}_{BC}}$$

$$\mathcal{E}_{3} = \frac{\mathbf{\underline{q}}_{CD}^{\tau}}{\mathbf{l}_{CD}} = \frac{\mathbf{\underline{\underline{\Pi}_{2}c}} \times \underline{\boldsymbol{\mu}}_{a}}{\mathbf{l}_{CD}}$$

$$\mathcal{E}_{4} = \frac{\mathbf{\underline{q}}_{EF}^{\tau}}{\mathbf{l}_{FE}} = \frac{\mathbf{\underline{\underline{H}_{3}e}} \times \underline{\boldsymbol{\mu}}_{a}}{\mathbf{l}_{FE}}$$

$$(c^{-2});$$

Для определения направления угловых ускорений звеньев векторы тангенциальных составляющих относительных ускорений переносим мысленно с плана ускорений на схему механизма в искомые точки и возможный поворот звеньев под действием этих векторов указывает направление их угловых ускорений. Вектор \overline{n}_{ic} , приложенный в т.С шатуна ВС, стремится повернуть его против часовой стрелки (см. кинематическую схему механизма). Вектор \overline{n}_{ic} , приложенный в т.С коромысла СD поворачивает его против часовой стрелки. Вектор \overline{n}_{ic} , приложенный в т.Е, тоже поворачивает шатун FE против часовой стрелки.

3. Силовой расчёт (динамический анализ) механизма.

Нагружаем звенья механизма заданными внешними силами: векторы сил тяжести \overline{G}_i прикладываем в точках центров масс, силу полезного P сопротивления P_{u_1} — к ползуну. Определяем инерционную нагрузку звеньев. У кривошипа центр масс совпадает с осью вращения, поэтому P_{u_1} = 0 . Вращается он равномерно и в связи с этим M_{u_1} = 0 .

$$P_{u_2} = m_2 \times a_{s_2} = m_2 \times \overline{\pi S_2} \times \mu_a \quad (H); \qquad M_{u_2} = J_{s_2} \times \varepsilon_2 = J_{s_2} \times \frac{\overline{n}_1^{c \times}}{l_{BC}} \mu_a \quad (H);$$

$$P_{u3} = {m \atop 3} \times a_{s3} = {m \atop 3} \times {\overline{ns} \atop 3} \times \mu_a$$
 $M_{u_3} = {s_3 \atop 3} \times {\mathcal E}_3 = J_{s_3} \times {\overline{n_2c} \times \mu_a \atop l_{CD}}$ $M_{u_3} = {s_3 \atop 3} \times {\mathcal E}_3 = J_{s_3} \times {\overline{n_2c} \times \mu_a \atop l_{CD}}$

$$P_{u_4}=m_4 imes a_s=m_4 imes \pi S_4 imes \mu_a$$
 (H); M_{u_4} S_4 $\varepsilon_4=J_{s_4} imes \frac{m_3^{e\times}}{l_{FE}}\mu_a$ ($H\cdot M$); J $P_{u_5}=m_5 imes a_s=m_5 imes a_E=m_5 imes \pi e imes \mu_a$ (H).

Векторы сил инерции прикладываем в центрах масс звеньев противоположно векторам ускорений, а векторы моментов инерции – противоположно угловым ускорениям.

Для звеньев 2, 3 и 4 определяем плечи переноса векторов сил инерции и находим точки качания их.

$$h_{2} = \frac{M_{u_{2}}}{P_{u_{2}} \times \mu_{1}} \qquad h_{3} = \frac{M_{u_{3}}}{P_{u_{3}} \times \mu_{1}} \qquad h_{4} = \frac{M_{u_{4}}}{P_{u_{4}} \times \mu_{1}} \qquad (MM).$$

Плечи откладываем в ту сторону, чтобы направление момента от силы инерции, приложенной в точке качания, относительно центра масс, совпадало бы с направлением момента инерции звена.

Силовой расчёт проводят по структурным группам, начиная с наиболее удалённой от ведущего звена, т.к. статически определёнными являются только такие группы звеньев.

3.1. Расчёт структурной группы 2 класса 2 вида (звенья 4, 5)

Строим кинематическую схему группы (рис. 2а приложения). Со схемы механизма переносим все силы, действующие на звенья этой группы. Силу инерции шатуна 4 прикладываем в точке K_4 (точке качания). Реакцию со стороны отброшенного коромысла 3 на шатун 4 в шарнире F разложим на две составляющие: тангенциальную - $R_{_{34}}^{'}$, направленную перпендикулярно оси шатуна, и нормальную - $R_{_{34}}^{'}$, направленную вдоль оси звена. Направление векторов этих сил на данном этапе выбирается произвольно. Вектор силы реакции со стороны направляющей (стойки) на ползун 5 $R_{_{65}}$ без учёта трения направляем перпендикулярно ей, т.е. по вертикали.

Определяем $R_{_{34}}^{^{1}}$. Составляем уравнение равновесия шатуна под действием моментов приложенных к нему сил относительно внутренней пары группы, т.е. точки E:

$$\sum m_{E(4)=0} ; R_{34}^{\tau} \times \overline{FE} - P_{u^4} \times h_{u^4} + G_{4} \times h_{G^{\frac{3}{4}}}$$

$$R_{34}^{\tau} = \frac{P_{u^4} \times h_{u^4} - G_{4} \times h_{G^{4}}}{\overline{FE}} (H).$$

Если значение $R_{_{34}}^{^{\mathrm{T}}}$ получается со знаком (-), то направление вектора $R_{_{34}}^{^{\mathrm{T}}}$ на схеме группы меняют на противоположное. Пусть в нашем случае получим $R_{_{34}}^{^{\mathrm{T}}}$ со знаком (-). Поэтому на схеме группы зачеркиваем вектор $\overline{R}_{_{34}}^{^{\mathrm{T}}}$ и направляем его в противоположную сторону.

Oпределяем $R_{_{34}}$ и $R_{_{65}}$. Уравнение равновесия структурной группы под действием приложенных к ней сил:

$$\sum \overline{P}_{i}(4,5)=0$$

При расшифровке этой краткой записи неизвестные силы $R_{_{34}}^{^{n}}$ и R ставим в начале и в конце уравнения и силы группируем по звеньям:

$$\overline{R}_{34}^n$$
 \overline{R}_{34}^r \overline{P}_{u4} \overline{C}_{4} \overline{P}_{u5} \overline{C}_{5} $\overline{P}_{n.c.}$ \overline{R}_{65} $\overline{P}_{0.5}$

В этом уравнении крайние составляющие известны только по направлению, а остальные – по величине и направлению (подчёркнуты двумя чертами).

Выбираем масштаб μ_p (H/мм) и строим план сил (рис. 26 приложения).

В выбранном масштабе силы изобразятся отрезками:

После того как отложены эти отрезки, из начала первого вектора (точки р) проводится направление $R_{_{34}}^{^{n}}$, т.е. вдоль оси шатуна FE, а из конца последнего вектора (точка f) — направление $R_{_{65}}$, т.е. вертикаль. Точка их пересечения m является замыкающей. Тогда:

$$R_{34}^n = mp \times \mu_p(H)$$
 : $R_{65} = \overline{fm} \times \mu_p(H)$.

Сравнивая направления векторов на схеме группы и на плане сил, видим, что вектор $\overline{R}^{^n}_{^{34}}$ на схеме группы надо направить в противоположную сторону.

Полная реакция в шарнире $F_ R_{34} \rightarrow R_{43} = R_F = ma \times \mu_p$

Для определения реакции во внутренней паре группы (шарнир E) решим векторное уравнение равновесия шатуна FE, отбросив ползун 5.

$$\sum P_{i(4)=0}$$
 : $\underline{R}_{34} + \underline{P}_{u_4} + \underline{G}_{u} + \underline{R}_{54} = 0$

Здесь $\frac{R_{54}}{-54}$ - реакция со сторон отброшенного ползуна 5 на шатун 4. Воспользуемся планом сил для группы, тогда:

$$R_{54} \downarrow \uparrow R_{45} = R_E = em \times \mu_P(H)$$

3.2. Расчёт структурной группы 2 класса 1 вида (звенья 2, 3).

Строим кинематическую схему данной структурной группы (рис. 3а приложения). Переносим со схемы механизма все силы. Силы инерции P_{u_2} и P_{u_3} прикладываем в точках качания звеньев K_2 и K_3 . В точке F прикладываем

вектор силы реакции от шатуна 4 - R_{43} . Направление его противоположно вектору R_{34} на плане сил для группы 4, 5. Реакции во внешних парах В и D раскладываем на две составляющие: $R_{12}^{\rm r}$ и $R_{12}^{\rm r}$; $R_{63}^{\rm r}$ и $R_{63}^{\rm r}$. Определяем $R_{12}^{\rm r}$ и $R_{63}^{\rm r}$

$$\sum m_c^{(2)=0} ; R_{12}^{\tau} \times \overline{BC} - P_{u^2} \times h_{u^2} + G_{2} \times h_{G} = 0 \Rightarrow$$

$$R_{12}^{\tau} = \frac{P_{\times} h_{u_{2}} - G_{2} \times h_{G_{2}}}{BC};$$

$$\sum m_{c}(3) = 0; -R_{63}^{\tau} \times CD - \int_{3}^{C} \times h_{G_{3}} - P_{u_{3}} \times h_{u_{3}} + R_{43} \times h_{43} = 0 \Rightarrow$$

$$R_{c_{63}} = \frac{G_{3} \times h_{G_{3}} - P_{u_{3}} \times h_{u_{3}} + R_{43} \times h_{43}}{CD}$$

Определяем $R_{_{12}}^{^{n}}$ и $R_{_{63}}^{^{n}}$:

$$\sum_{i} P_{i(2,3)=0}$$
 $\overline{R}_{12}^n + \overline{R}_{12}^r + \overline{P}_{u_2} + \overline{P}_{u_3} + \overline{P}_{u_3} + \overline{Q}_{3} + \overline{R}_{43} + \overline{R}_{63}^{-r} + \overline{R}_{63}^{-n} = 0$

Строим план сил для данной группы в масштабе $\mu_{p} = \begin{pmatrix} H/MM \end{pmatrix}$, (рис. 3б приложения). Для этого вычисляем отрезки:

Отложив эти отрезки, далее из начала первого отрезка (точка p) проводим линию, параллельную оси шатуна BC, а из конца последнего (точка k) — линию, параллельную оси коромысла CD.

Тогда
$$R_{12}^{\scriptscriptstyle n} = mp imes \mu_{\scriptscriptstyle p} \ (_{H})_{\scriptscriptstyle ;} R_{\scriptscriptstyle 63} = \overline{km} imes \mu_{\scriptscriptstyle p} \ (_{H})_{\scriptscriptstyle .}$$

Полные реакции во внешних парах B и D

$$\mathbf{R}_{12} \mathbf{1} \mathbf{1} \mathbf{R}_{21} = \mathbf{R}_{B} = \mathbf{m} \mathbf{a} \times \mathbf{\mu}_{p} \quad (\mathbf{H}); \quad \mathbf{R}_{63} \mathbf{1} \mathbf{1} \mathbf{R}_{36} = \mathbf{R}_{D} = \mathbf{m} \mathbf{f} \times \mathbf{\mu}_{p} \quad (\mathbf{H}).$$

Определяем реакцию во внутренней паре группы – шарнире С.

Рассмотрим условие равновесия шатуна ВС:

$$\sum P_{i(2)=0}$$
 : $\underline{R}_{12} + \underline{P}_{u^2} + \underline{G}_{2} + \underline{R}_{32} = 0$.

Из построенного для группы плана сил:

$$R_{32} \downarrow \uparrow R_{23} = R_c = me \times \mu_p \quad (H).$$

3.3. Расчёт ведущего звена.

Строим кинематическую схему ведущего звена (рис. 4а приложения).

Определяем уравновешивающую силу, направив вектор её перпендикулярно кривошипу в сторону его вращения. В шарнире В прикладываем так же вектор R_{21} , направление которого взято противоположно вектору R_{12} на плане сил для группы 2, 3.

$$\sum m_{A(1)=0}$$
; $-P_{yp} \times AB+R_{21} \times h_{21}=0$ \Rightarrow $P_{yp} = \frac{R_{21} \times h_{21}}{\overline{AB}}$ (H).

Определяем реакцию в кинематической паре А:

$$\Sigma P_{i(1)=0}$$
 ; $\frac{R}{21} + \overline{P}_{yp} + \frac{G}{1} + \frac{R}{61} = 0$.

Строим план сил ведущего звена в масштабе μ_{p} , (рис. 46 приложения):

$$pa = \frac{P_{yp}(MM)}{\mu_p}$$
 ; $\overline{ab} = \frac{R_{21}(MM)}{\mu_p}$; $\overline{bc} = \frac{G_1(MM)}{\mu_p}$

 $_{\text{C}}$ плана сил: $R_{61} + R_{16} = R_{A} = pe \times \mu_{p}$ ($_{H}$).

3.4. Определение уравновешивающей силы методом Жуковского

Строим повёрнутый на 90° в сторону, противоположную вращению кривошипа план возможных скоростей. По правилу подобия определяем положения точек центров масс звеньев и точек качания их. Со схемы механизма в одноимённые точки этого плана скоростей переносим все силы, в том числе и уравновешивающую (рис. 5). Составляем уравнение равновесия плана скоростей как жёсткого рычага под действием моментов всех сил относительно полюса. Решая его, получаем значение уравновешивающей силы

по Жуковскому –
$$P_{_{yp}}^{^{_{\!\!\!M\!y\!\kappa}}}$$
 :

$$\begin{split} & \sum_{}^{m} {}_{(a)=0} \quad ; \\ & -P_{yp}^{\text{Жук}} \times \overline{pb} - P_{u_{2}} \times h_{u_{2}} - G_{2} \, \dot{\boldsymbol{\iota}} \, h_{G_{2}} + G_{3} \, \dot{\boldsymbol{\iota}} \, h_{G_{3}} - \\ & -P_{u_{3}} \times h_{u_{3}} + G_{4} \, \dot{\boldsymbol{\iota}} \, h_{G_{4}} - P_{u_{4}} \, \dot{\boldsymbol{\iota}} \, h_{u_{4}} - P_{u_{5}} \, \dot{\boldsymbol{\iota}} \, \boldsymbol{pe} + P_{n.c.} \, \dot{\boldsymbol{\iota}} \, \boldsymbol{pe} = 0 \\ & ; \\ & P_{yp}^{\text{Жук}} = \frac{-P_{u_{2}} \times h_{u_{2}} - G_{2} \, \dot{\boldsymbol{\iota}} \, h_{G_{2}} + G_{3} \, \dot{\boldsymbol{\iota}} \, h_{G_{3}} - P_{u_{3}} \, \dot{\boldsymbol{\iota}} \, h_{u_{3}} + G_{4} \, \dot{\boldsymbol{\iota}} \, h_{G_{4}} - P_{u_{4}} \, \dot{\boldsymbol{\iota}} \, h_{u_{4}} + P_{u_{5}} \, \dot{\boldsymbol{\iota}} \, \boldsymbol{pe} + P_{n.c.} \, \dot{\boldsymbol{\iota}} \, \boldsymbol{pe} \\ & P_{yp}^{\text{Жук}} = \frac{-P_{u_{2}} \times h_{u_{2}} - G_{2} \, \dot{\boldsymbol{\iota}} \, h_{G_{2}} + G_{3} \, \dot{\boldsymbol{\iota}} \, h_{G_{3}} - P_{u_{3}} \, \dot{\boldsymbol{\iota}} \, h_{u_{3}} + G_{4} \, \dot{\boldsymbol{\iota}} \, h_{G_{4}} - P_{u_{4}} \, \dot{\boldsymbol{\iota}} \, h_{u_{4}} + P_{u_{5}} \, \dot{\boldsymbol{\iota}} \, \boldsymbol{pe} + P_{n.c.} \, \dot{\boldsymbol{\iota}} \, \boldsymbol{pe} \\ & P_{yp}^{\text{Жук}} = \frac{-P_{u_{2}} \times h_{u_{2}} - G_{2} \, \dot{\boldsymbol{\iota}} \, h_{G_{2}} + G_{3} \, \dot{\boldsymbol{\iota}} \, h_{G_{3}} - P_{u_{3}} \, \dot{\boldsymbol{\iota}} \, h_{u_{3}} + G_{4} \, \dot{\boldsymbol{\iota}} \, h_{G_{4}} - P_{u_{4}} \, \dot{\boldsymbol{\iota}} \, h_{u_{4}} + P_{u_{5}} \, \dot{\boldsymbol{\iota}} \, \boldsymbol{pe} + P_{n.c.} \, \dot{\boldsymbol{\iota}} \, \boldsymbol{pe} \\ & P_{yp}^{\text{Жук}} = \frac{-P_{u_{2}} \times h_{u_{2}} - G_{2} \, \dot{\boldsymbol{\iota}} \, h_{G_{2}} + G_{3} \, \dot{\boldsymbol{\iota}} \, h_{G_{3}} - P_{u_{3}} \, \dot{\boldsymbol{\iota}} \, h_{u_{3}} + G_{4} \, \dot{\boldsymbol{\iota}} \, h_{u_{4}} + P_{u_{5}} \, \dot{\boldsymbol{\iota}} \, \boldsymbol{pe} + P_{n.c.} \, \dot{\boldsymbol{\iota}} \, \boldsymbol{pe} \\ & P_{yp}^{\text{Wyk}} = \frac{-P_{u_{2}} \times h_{u_{2}} - G_{2} \, \dot{\boldsymbol{\iota}} \, h_{G_{2}} + G_{3} \, \dot{\boldsymbol{\iota}} \, h_{G_{3}} - P_{u_{3}} \, \dot{\boldsymbol{\iota}} \, h_{u_{3}} + G_{4} \, \dot{\boldsymbol{\iota}} \, h_{u_{4}} + P_{u_{5}} \, \dot{\boldsymbol{\iota}} \, \boldsymbol{\iota} \, \boldsymbol{h}_{u_{5}} + G_{5} \, \dot{\boldsymbol{\iota}} \, \boldsymbol{\iota} \, \boldsymbol$$

Полученное значение уравновешивающей силы сравнивается со значением, найденным при расчёте ведущего звена, расхождение не должно превышать ± 5 %.

$$\Delta = \frac{P_{yp}^{xyk} - P_{yp}}{P_{yp}^{xk}} \times 100$$

$$\frac{1}{2} \frac{P_{yp}^{xyk} - P_{yp}}{P_{yp}^{yk}} \times 100$$

Оформление курсовой работы

1. Основные требования

Пояснительная записка (ПЗ) оформляется по ГОСТ 2.105-91 «Общие требования к текстовым документам» и выполняется рукописным или компьютерным способом на одной стороне листа формата А-4. Все листы, кроме титульного и задания, должны иметь обведённую рамку с отступлениями на 20 мм от левого края и на 5 мм от трёх других краёв и контур основной надписи по форме 2а, в которой в отведённой графе проставляется номер страницы.

Титульный лист записки является первой её страницей. На первом листе текста заполняется основная надпись по форме 2 (40 ½ 185).

Текст располагается следующим образом: расстояние от рамки слева до границ текста в начале строк не менее 5 мм, в конце строк — не менее 3 мм, от верхней и нижней строк — не менее 10 мм. Высота цифр и букв не менее 2,5 мм. Число строк — не более 30.

Текст пояснительной записки разделяют на разделы и подразделы.

Разделы должны иметь порядковые номера в пределах всей записки, обозначенные арабскими цифрами с точкой. Номера подразделов состоят из номера раздела и подраздела, разделённые точкой (например, 1.2. – второй подраздел первого раздела).

Наименования разделов и подразделов должны быть краткими. Наименования разделов записывают в виде заголовков (симметрично тексту) прописными буквами. Наименования подразделов записывают в виде заголовков (с абзаца) строчными буквами (кроме первой – прописной). Переносы слов в заголовках не допускаются. Точку в конце заголовка не ставят.

Расстояние между заголовком и текстом 15 мм. Расстояние между заголовками раздела и подраздела 7 мм.

Каждый раздел рекомендуется начинать с новой страницы.

В конце записки приводится список литературы.

1.2. Построение таблиц

Таблица позволяет представить цифровой материал ПЗ в компактной форме. Для таблицы рекомендуется заголовок, раскрывающий в полной мере её содержание. Заголовок должен быть выразительным и кратким.

Таблицы нумеруют. Номер таблицы состоит из номера раздела и порядкового номера, разделённых точкой. Слово «Таблица» и номер записывают над заголовком таблицы справа у линии рамки (см. пример 1).

1.3. Формулы и расчёты

Расчёты излагаются в той последовательности, которая определяется характером решаемой задачи.

Наиболее важные из формул, на которые ссылаются в тексте, нумеруют арабскими цифрами.

Номер формулы состоит из номера раздела и её порядкового номера разделённой точкой. Номер формулы заключают в круглые скобки. Например (3.1.), что означает первую формулу третьего раздела.

Использованные в формуле символы последовательно расшифровываются. Расшифровку начинают со слова «где», непосредственно после которого приводят первый поясняемый символ. Все последующие символы отделяют от предыдущей расшифровки точкой с запятой. Перед словом «где» после формулы ставят запятую.

Пример. Мощность привода [2]

$$N=T\cdot\omega$$
 , (3.1)
$$\omega=\frac{\pi n}{30}$$
 где, ω - угловая скорость, ();
$$T$$
 - крутящий момент, ($T=100$ Hm);
$$n$$
 - частота вращения, ($n=1480$ мин⁻¹);
$$N=100\cdot155=15\cdot10^{3}\mathrm{Br}=15\mathrm{kBr}$$

После основной части проекта располагают «Заключение», которое является структурной неотъемлемой частью любого проекта. В нём подводится итог проектирования.

Заключение должно содержать оценку результатов проекта, выводы по проделанной работе, предложения по использованию полученных результатов.

1.4. Библиографическое описание литературы

Список использованной литературы должен включать все обязательные элементы библиографического описания в установленной последовательности в соответствии с ГОСТом 7.0.100-2018. Библиографическое описание составляется по схемам:

а) для книг, брошюр и других изданий:

Фамилии и инициалы авторов (.) Основное заглавие (:)

Сведения, относящиеся к заглавию (/) Сведения об авторах (.-)

Сведения о повторности издания (.-) Место издания (:) Издательство (,) Год издания (.) Количество страниц (.)

б) для составных частей издания (статьи):

Фамилии и инициалы авторов статьи (.) Основное заглавие (")

Сведения об издании, в котором помещена составная часть (.)

В библиографическом описании издания двух авторов приводят фамилии обоих, разделяя их запятой. Если авторов три, то в описании приводят фамилии лишь первого с добавлением слова «[и др.]». Если авторов более четырёх, фамилии их помещают после заголовка.

Место издания приводят полностью. Сокращают только названия двух городов: М (Москва) и Л (Ленинград).

Основная литература

- 1. Тимофеев, Г. А. Теория механизмов и машин: учебник и практикум для вузов / Г. А. Тимофеев. 4-е изд., перераб. и доп. Москва: Издательство Юрайт, 2021. 432 с. (Высшее образование). ISBN 978-5-534-12245-9. Текст: электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/488589
- 2. Капустин, А. В. Теория механизмов и машин. Практикум: учебное пособие для вузов / А. В. Капустин, Ю. Д. Нагибин. Москва: Издательство Юрайт, 2021. 65 с. (Высшее образование). ISBN 978-5-9916-9972-3. Текст: электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/492261
- 3. Мкртычев, О. В. Теория механизмов и машин : практикум / О.В. Мкртычев. Москва : ИНФРА-М, 2021. 327 с. ISBN 978-5-9558-0541-2. Текст : электронный. URL: https://znanium.com/catalog/product/1426330. Текст : электронный.
- 4. Тимофеев, Г. А. Теория механизмов и машин : учебник и практикум для вузов / Г. А. Тимофеев. 4-е изд., перераб. и доп. Москва : Издательство Юрайт, 2023. 432 с. (Высшее образование). ISBN 978-5-534-12245-9. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/510455.
- 5. Тимофеев, Г. А. Теория механизмов и машин : учебник и практикум для вузов / Г. А. Тимофеев. 4-е изд., перераб. и доп. Москва : Издательство Юрайт, 2024. 432 с. (Высшее образование). ISBN 978-5-534-12245-9. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/535433.

Дополнительная литература

- 1. Теория механизмов и машин. Проектирование элементов и устройств технологических систем электронной техники : учебник для вузов / Е. Н. Ивашов, П. А. Лучников, А. С. Сигов, С. В. Степанчиков ; под редакцией А. С. Сигова. 2-е изд., перераб. и доп. Москва : Издательство Юрайт, 2023. 369 с. (Высшее
- образование). ISBN 978-5-534-03196-6. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/512208
- 2. Чусовитин, Н. А. Теория механизмов и машин: учебное пособие для вузов / Н. А. Чусовитин, В. П. Гилета, Ю. В. Ванаг. 2-е изд., перераб. и доп. Москва: Издательство Юрайт, 2021. 177 с. (Высшее образование). ISBN 978-5-534-11972-5. Текст: электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/472066.
- 3. Капустин, А. В. Теория механизмов и машин. Практикум: учебное пособие для вузов / А. В. Капустин, Ю. Д. Нагибин. Москва: Издательство Юрайт, 2024. 65 с. (Высшее образование). ISBN 978-5-534-17166-2. Текст: электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/538995.

Вопросы для подготовки к защите курсовой работы

- 1. Объяснить назначение и устройство данного механизма. Дать технические названия всех звеньев, подсчитать количество кинематических пар и определить их класс.
 - 2. Определить степень подвижности и класс механизма.
- 3. Дать определение структурной группы и привести характеристику структурных групп, входящих в состав данного механизма.
 - 4. Объяснить, как строится кинематическая схема механизма.
- 5. Объяснить порядок кинематического анализа рычажных механизмов графоаналитическим методом.
- 6. Объяснить сущность метода подобия при определении скоростей и ускорений отдельных точек звеньев.
- 7. Рассказать правила определения направлений угловых скоростей и ускорений звеньев.
 - 8. Для чего и как проводится силовой расчет рычажных механизмов?
 - 9. Как сводится задача динамики к задаче статики?
- 10. Как определялись главные векторы и главные моменты сил инерции для каждого звена механизма?
- 11. Как определяются направления векторов сил инерции и моментов инерции звеньев?
- 12. Как находится точка качания звена, совершающего плоскопараллельное движение?
- 13. В какой последовательности определяются реакции в кинематических парах групп Ассура 2 класса?
 - 14. В чем суть уравновешивающей силы и как она определяется?
 - 15. Объяснить особенность расчета структурной группы 2 класса 3 вида?
 - 16. Как определяется уравновешивающая сила методом Жуковского?

ПРИЛОЖЕНИЕ

Содержание графической части

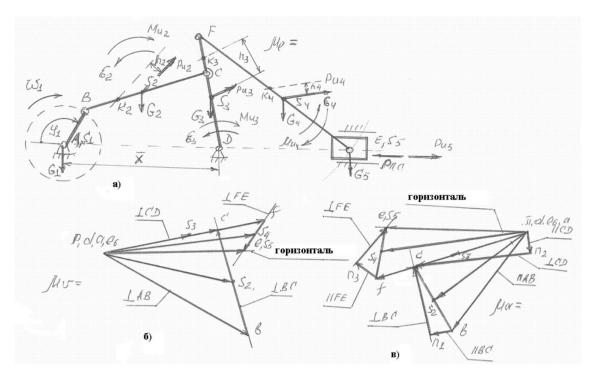


Рис. 1 Кинематическая схема механизма — а, план скоростей — б и план ускорений — в

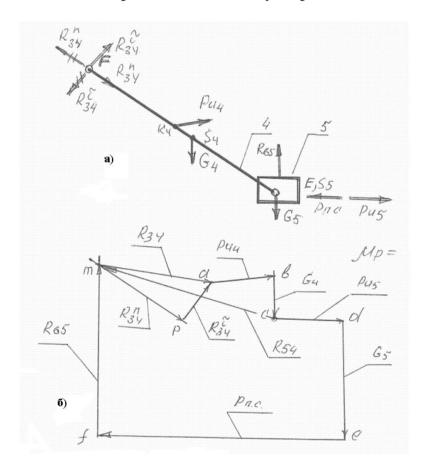


Рис. 2 Кинематическая схема структурной группы II класса 2 вида (звенья 4-5) — а и план сил для нее — 6

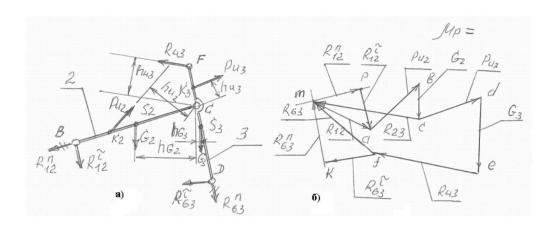


Рис. 3 Кинематическая схема структурной группы II класса 1 вида (звенья 2-3) — а и план сил для нее — б

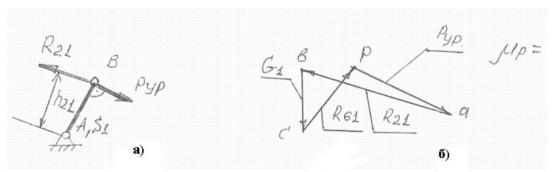


Рис. 4 Кинематическая схема ведущего звена – а и план сил для него – б

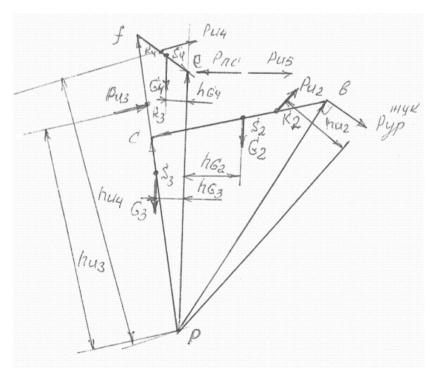
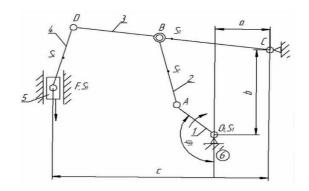
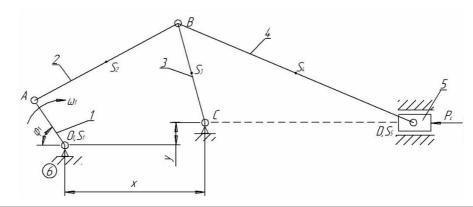



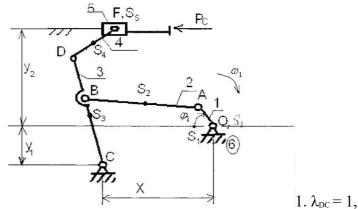
Рис. 5 Рычаг Жуковского


Задание № 1 Анализ плоского шестизвенного механизма вытяжного пресса.

	Обо-	Раз-					Но	мера варі	иантов и	нисловые	значения	парамет	ров				
Параметры	зна- чение	мер- ность	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	loa	M	0,1	0,09	0,09	0,09	0,1	0,11	0,12	0,1	0,09	0,1	0,12	0,1	0,09	0,1	0,12
Размеры	$l_{\scriptscriptstyle AB}$	M	0,32	0,38	0,29	0,4	0,46	0,45	0,43	0,43	0,36	0,4	0,45	0,4	0,35	0,4	0,45
звеньев	$l_{\scriptscriptstyle BC}$	M	0,3	0,35	0,25	0,35	0,4	0,4	0,35	0,4	0,3	0,3	0,4	0,3	0,3	0,35	0,4
механизма	$l_{\scriptscriptstyle \mathrm{CD}}$	M	0,42	0,45	0,37	0,45	0,5	0,5	0,45	0,45	0,42	0,45	0,5	0,45	0,4	0,45	0,5
	$l_{ m DF}$	M	0,2	0,22	0,2	0,22	0,24	0,25	0,2	0,22	0,2	0,25	0,25	0,22	0,2	0,25	0,25
	a		0,16	0,13	0,14	0,14	0,15	0,14	0,13	0,16	0,13	0,14	0,15	0,15	0,14	0,14	0,12
Координаты	b		0,29	0,28	0,3	0,32	0,3	0,3	0,35	0,3	0,28	0,3	0,35	0,3	0,25	0,3	0,35
	с		0,45	0,5	0,4	0,5	0,55	0,6	0,5	0,5	0,45	0,5	0,6	0,5	0,45	0,5	0,6
Частота вращения кривошипа	N_1	м ип ⁻¹	50	45	40	42	60	64	6-5	70	72	68	48	50	42	46	42
	m_1	КГ	5	5,5	6,0	5,0	4,5	60	6,5	5,5	4,5	5,0	60	5,0	5,0	5,0	6,0
	m_2	ΚΓ	9	11	10	12	12	13	14	12	10	11	13	12	12	11	12
Массы звеньев	m ₃	ΚΓ	10	14	12	15	18	20	15	16	11	15	18	16	14	14	18
	m ₄	ΚΓ	6	8	3	9	8	9	7	8	6	7	8	9	10	8	8
	m ₅	ΚΓ	30	32	35	32	40	42	35	40	42	46	46	38	40	42	36
Среднее усиление выпрессовки	$P_{\rm c}$	кн.	0,72	0,8	0,76	0,54	0,8	0,74	0,64	0,78	0,9	0,7	0,72	0,76	0,81	84	0,8
Обобщенная координата	Φ_1	град.	0	30	45	60	90	120	150	180	150	135	120	90	60	45	30

Примечание: 1. центры масс звеньев 2, 3 и 4 лежат на их серединах; 2. центральные моменты инерции звеньев 2, 3 и 4 определить по формуле: J_{Si} =0,1 · m_i · l_i^2 (кг · m^2).

Задание № 2 Анализ плоского шестизвенного механизма конвейера.



	Обо-	Раз-					Номера	варианто	в и число	вые знач	ения пара	аметров				
Параметры	зна- чение	мер- ность	1	2	3	4	5	6	7	8	9	10	11	12	13	14
	l_{oa}	M	0,09	0,1	0,11	0,12	0,14	0,1	0,12	0,14	0,15	0,1	0,12	0,14	0,15	0,1
Размеры	$l_{\scriptscriptstyle AB}$	M	0,38	0,42	0,44	0,46	0,46	0,4	0,42	0,44	0,45	0,4	0,44	0,5	0,5	0,4
звеньев	$l_{\scriptscriptstyle BC}$	M	0,3	0,35	0,36	0,38	0,4	0,3	0,32	0,34	0,4	0,3	0,4	0,45	0,4	0,35
	$l_{\scriptscriptstyle \mathrm{BD}}$	M	0,76	0,84	0,88	0,92	0,94	0,82	0,8	0,85	0,9	0,8	0,9	0,9	0,85	0,8
Координаты	X_1	M	0,3	0,32	0,34	0,35	0,32	0,34	0,4	0,41	0,42	0,35	0,4	0,45	0,42	0,4
Координаты	у	СМ	5	6	6	6	8	5	6	7	8	5	6	7	6	5
Угловая скорость кривошипа	ω_1	c-1	6,0	6,2	6,5	7,0	6,8	7,2	6,6	6,2	6,4	6,5	6,8	7,0	8,0	7,0
	m_1	ΚΓ	4,5	4,8	4,9	4,8	5	4,6	5,0	4,8	5,5	4,5	4,5	4,8	5,0	4,0
	m_2	КГ	16	17	18	20	18	15	16	19	20	16	18	20	18	16
Массы звеньев	m_3	ΚΓ	20	15	16	18	14	12	13	16	18	14	15	16	15	12
	m ₄	ΚΓ	60	45	48	54	42	36	39	48	54	42	45	48	45	40
	m ₅	ΚΓ	100	250	240	250	200	240	220	240	250	220	200	240	250	200
Сила сопротивления движению ползуна 5	P_{c}	кН	1,5	1,4	1,2	1,5	1,4	1,2	1,4	1,5	1,6	1,2	1,4	1,5	1,6	1,2
Обобщенная координата	ϕ_1	град.	0	15	30	45	60	90	120	150	30	45	60	90	120	150

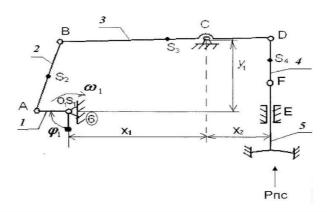
Примечание: 1. центры масс звеньев 2, 3 и 4 лежат на их серединах; 2. центральные моменты инерции звеньев 2, 3 и 4 определить по формуле:

 $J_{Si} = 0,1 \cdot m_i \cdot l_i^2 (\kappa \Gamma \cdot M^2).$

Задание № 3 Анализ плоского шестизвенного механизма подачи.

						1		7		1. λ	$_{\rm DC} = 1,3$	$\Lambda_{ m BC}$				
	Обо-	Раз-мер-					Ho	мера вари	антов и ч	нисловые	значения	парамет	ров			
Параметры	зна- чение	ность	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Длина кривошипа	$\lambda_{\scriptscriptstyle \mathrm{OA}}$	M	0,2	0,22	0,20	0,18	0,16	0,15	0,16	0,18	0,2	0,22	0,18	0,16	0,15	0,2
Длина шатуна	$\lambda_{\scriptscriptstyle AB}$	M	0,5	0,52	0,54	0,45	0,4	0,4	0,45	0,45	0,5	0,5	0,45	0,5	0,4	0,5
Длина коромысла	$\lambda_{\scriptscriptstyle BC}$	M	0,4	0,42	0,45	0,45	0,4	0,45	0,4	0,45	0,4	0,4	0,4	0,45	0,35	0,4
	X	M						0,5								
Координаты	Y_1	M						0,25								

15

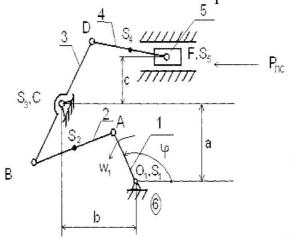

0,2

коромысла	$\lambda_{ m BC}$	M	0,4	0,42	0,45	0,45	0,4	0,45	0,4	0,45	0,4	0,4	0,4	0,45	0,35	0,4	0,35
	X	M						0,5									
Координаты	Y_1	M			N.			0,25									
_	Y_2	M						0,5			0		2				
Обобщенная координата	ϕ_1	град	0	30	45	60	90	120	150	0	30	45	60	90	12	150	180
Угловая скорость	ω 1	c-1	10	12	14	15	12	14	10	12	14	15	10	12	14	15	10
Масса кривошипа	\mathbf{m}_1	КГ	1,5	2,0	1,5	1,5	1,5	1,5	1,6	1,8	1,5	2,0	1,8	1,5	1,5	1,6	1,8
Масса шатуна	m ₂	ΚΓ	3,5	3,8	4,0	3,0	3,0	3,2	3,2	3,3	3,6	3,8	3,2	3,6	3,2	3,4	3,5
Масса коромысла	m ₃	КГ	3,2	3,6	3,8	3,0	2,8	3,0	3,0	3,2	3,5	3,6	3,0	3,5	3,0	3,2	3,2
Масса шатуна	m ₄	КГ	3,0	3,4	3,5	2,8	2,5	2,5	2,6	3,0	3,2	3,4	2,5	3,0	2,8	3,0	3,0
Масса ползуна	m ₅	ΚΓ	10	12	14	10	12	14	15	14	12	10	10	14	12	14	15
Сила сопротивления	Pc	H · 10 ²	2	1,8	2,2	2,4	2,5	2,4	2,2	2,0	2,2	2,0	1,8	2,2	2,4	2,5	2,4

Примечание: 1. центры масс звеньев 2, 3 и 4 лежат на серединах;

2. центральные моменты инерции звеньев 2, 3 и 4 определить по формуле: I_{Si} =0,1 · m_i · λ_i^2 (кг · м²).

Задание № 4 Анализ плоского шестизвенного механизма мембранного насоса.

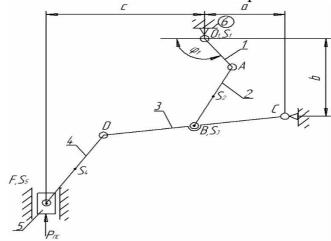


		Обо-	Раз-					Номера	варианто	в и число	овые знач	ения пар	аметров				
Пар	раметры	зна- чение	мер- ность	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Длина кр	оивошипа	λ_{O_1A}	M	0,15	0,12	0,14	0,1	0,1	0,12	0,15	0,14	0,12	0,1	0,14	0,15	0,14	0,13
Длина ша 3 и 4	атунов	$\lambda_{_{\mathrm{AB}}}=$ $\lambda_{_{\mathrm{DF}}}$	М	0,35	0,3	0,34	0,3	0,32	0,32	0,36	0,32	0,34	0,31	0,33	0,36	0,15	0,34
Длина ко	ромысла	$\lambda_{\scriptscriptstyle \mathrm{BC}}$	M	0,5	0,45	0,46	0,4	0,42	0,44	0,48	0,44	0,46	0,41	0,45	0,5	0,45	0,44
Длина ры	1чага	$\lambda_{\scriptscriptstyle{\mathrm{CD}}}$	M	0,25	0,25	0,24	0,2	0,22	0,24	0,25	0,28	0,26	0,21	0,26	0,26	0,25	0,25
		X_1	M	0,45	0,4	0,42	0,38	0,4	0,40	0,44	0,42	0,4	0,39	0,4	0,46	0,4	0,38
Координа	аты	X_2 Y_1	M	0,3	0,25	0,28	0,2	0,25	0,24	0,24	0,3	0,28	0,23	0,32	0,26	0,3	0,28
			M	0,32	0,3	0,3	0,25	0,28	0,3	0,3	0,28	0,32	0,26	0,29	0,32	0,3	0,3
I	Координаты Угловая скорость кривошипа		С	6,0	6,2	6,5	7,0	7,2	7,5	8,0	8,2	6,4	7,0	7,5	8,0	6,5	7,0
B:	кривошипа	\mathbf{m}_1	КГ	2,0	2,1	2,0	1,8	2,0	1,9	2,2	2,1	2,0	1,9	2,0	2,2	2,1	2,0
Массы звепьев:	шатунов	m ₂ =m ₄	КГ	10	11	8	8	12	9	10	9	10	10	9	12	10	8
38 7	коромысла	m ₃	КГ	15	15	14	12	16	13	14	13	15	14	12	14	14	12
Штока с 1	мембраной	m ₅	КГ	3,0	3,2	2,8	2,5	2,2	3,0	3,1	3,0	3,2	2,4	3,1	3,2	3,0	3,0
Сила пол сопротив		$P_{\Pi C}$	Н	400	450	420	400	500	520	480	500	460	500	475	560	500	480
Обобщен координа		$oldsymbol{arphi}_1$	град.	0	30	45	60	90	120	135	150	180	210	225	240	270	300

Примечание: 1. центры масс звеньев 2, 3 и 4 лежат на серединах;

2. центральные моменты инерции звеньев 2 , 3 и 4 определить по формуле: $I_{Si} = 0, 1 \cdot m_i \cdot \lambda_i^2 (\kappa \Gamma \cdot M^2)$.

Задание № 5 Анализ плоского шестизвенного механизма горизонтального транспортера. ${5\atop 4}$

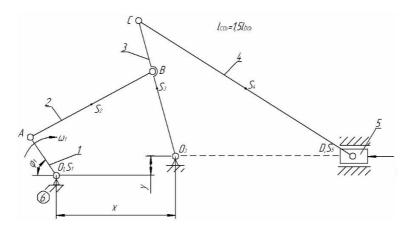


Параметры	Обо-	Раз-мер-ность			Но	мера вариа	нтов и число	овые значен	ия парамет	ров	90	
	значе-	_	1	2	3	4	5	6	7	8	9	10
	ние							×				
Длина кривошипа	λ_{O_1A}	M	0,12	0,15	0,2	0,06	0,08	0,25	0,1	0,12	0,16	0,2
Длина шатуна	λ_{AB}	M	0,45	0,55	0,75	0,22	0,3	0,94	0,37	0,48	0,6	0,75
Длина рычагов коромысла	$\lambda_{BC} = \lambda_{CD}$	М	0,18	0,22	0,3	0,08	0,12	0,38	0,15	0,18	0,24	0,3
Длина шатуна	λ_{DF}	M	0,3	0,4	0,5	0,16	0,24	0,7	0,32	0,36	0,4	0,5
Обобщенная координата	φ	град.	0	30	45	60	90	120	135	0	30	45
	a	M	0,15	0,18	0,25	0,08	0,1	0,31	0,12	0,15	0,2	0,24
Координаты:	b	M	0,45	0,53	0,75	0,22	0,28	0,93	0,36	0,45	0,6	0,72
	c	M	0,14	0,18	0,25	0,08	0,1	0,3	0,12	0,14	0,16	0,18
	\mathbf{m}_1	КГ	1,5	1,8	2,0	0,5	1,0	3,0	1,5	1,8	2,0	2,0
	m_2	КГ	4,5	5,0	5,5	2,5	3,0	6,0	4,5	4,8	5,0	6,0
Массы звеньев:	m ₃	КГ	3,0	4,0	5,0	1,5	2,0	8,0	3,0	3,2	3,5	4,0
	m ₄	КГ	2,5	3,0	3,5	2,0	3,0	5,0	2,5	2,8	3,0	3,5
	m ₅	КГ	20	25	30	10	15	40	25	25	30	40
Угловая скорость кривошипа	\mathbf{W}_1	c-l	50	55	60	65	70	55	60	60	50	55
Сила полезного действия	P_{PC}	Н	800	900	1200	600	700	1400	600	700	800	1000

Примечание: 1. центры масс звеньев 2, 3 и 4 лежат на их серединах; 2. центральные моменты инерции звеньев 2, 3 и 4 определить по формуле:

 $J_{Si} = 0, 1 \cdot m_i \cdot l_i^2 (\kappa \Gamma \cdot M^2).$

Задание № 6 Анализ плоского шестизвенного механизма вертикального транспортера.

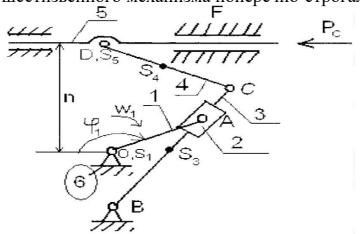

	Обо-				Н	омера вариа	нтов и число	вые значен	ия параметр	ОВ		
Параметры	значе-	Раз-мер-ность	1	2	2	4	5		7	8	9	10
	ние		1	2	3	4	3	6	/	0	9	10
Длина кривошипа	l_{ola}	M	0,15	0,1	0,08	0,12	0,2	0,14	0,24	0,1	0,18	0,25
Длина шатуна	1 _{AB}	M	0,4	0,27	0,22	0,32	0,55	0,38	0,65	0,28	0,5	0,7
П	I BC	M										
Длина рычагов коромысла	$l_{\scriptscriptstyle \mathrm{BD}}$	M	0,37	0,25	0,2	0,3	0,5	0,36	0,6	0,24	0,45	0,62
Длина шатуна	l_{DF}	M	0,23	0,15	0,12	0,18	0,3	0,23	0,36	0,16	0,27	0,38
	a	M	0,3	0,2	0,17	0,24	0,4	0,28	0,48	0,2	0,36	0,5
Координаты:	b	M	0,45	0,3	0,25	0,36	0,6	0,44	0,72	0,3	0,55	0,75
•	С	M	0,5	0,35	0,25	0,4	0,65	0,45	0,75	0,3	0,55	0,8
Обобщенная координата	y ₁	град	0	30	45	60	90	120	150	60	90	45
Угловая скорость кривошипа	ω_1	C-1	8	7,5	10	9	8,5	7,5	7	6,5	8	6
	m ₂	КГ	3,5	3	2,5	3,4	4	3,2	4,5	3	4	5
	m ₃	КГ	7	6	5	5,5	8	6,5	10	5,5	7,5	10
Массы звеньев	m_4	КГ	2,5	2	2	2,2	3	2,4	4	2	3	4,5
	m ₅	КГ	20	15	12	16	25	18	30	14	20	28
Сила полезного сопротивления	Рпс	кН	0,6	0,5	0,4	0,55	0,65	0,45	0,8	0,45	0,6	0,8

Примечание: 1. масса кривошипа m₁=0,3 m₂;

^{2.} центры масс звеньев 2, 3 и 4 лежат на их серединах; 3. центральные моменты инерции звеньев 2, 3 и 4 определить по формуле:

 $J_{Si} = 0, 1 \cdot m_i \cdot l_i^2 (K\Gamma \cdot M^2).$

Задание № 7 Анализ плоского шестизвенного механизма колеблющегося транспортера.

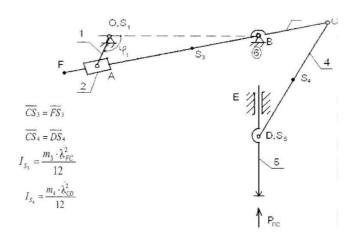

Параметры	Обо-	Раз-			8	350	Номер	а вариантої	в и числовь	ие значения	параметро	В		
	значе-	мер-	1	2	3	4	5	6	7	8	9	10	11	12
	ние	ност												
		Ь												
Длина кривошипа	l_{O1A}	M	0,1	0,12	0,12	0,11	0,15	0,15	0,12	0,14	0,15	0,14	0,12	0,1
Длина шатуна	l_{AB}	M	0,35	0,4	0,4	0,42	0,35	0,45	0,38	0,35	0,36	0,45	0,4	0,32
Длина коромысла	l_{BO3}	M	0,29	0,3	0,31	0,32	0,33	0,34	0,28	0,27	0,26	0,35	0,28	0,29
Длина шатуна	$l_{\scriptscriptstyle{\mathrm{CD}}}$	M	0,85	0,9	0,88	0,9	0,9	0,85	0,75	0,7	0,72	0,8	0,75	0,9
Va an myyramy y	X	M	0,32	0,34	0,35	0,4	0,38	0,4	0,3	0,32	0,3	0,4	0,35	0,35
Координаты:	у	CM	5	6	8	8	6	8	5	6	6	8	6	6
Угловая скорость кривошипа	ω_1	c-1	6	7	8	8	7	6	8	9	10	8	6	8
Обобщенная координата	ϕ_1	град	0	30	45	60	90	120	135	150	180	30	45	90
Масса звеньев:														
Шатуна 2	m ₂	ΚΓ	5	6	5,5	6	5	4,5	4	4,5	4,8	5,2	5,5	6
Коромысла 3	m ₃	ΚΓ												
Шатуна 4	m ₄	ΚΓ	12	18	16	16	15	14	13	12	12	14	13	15
Ползуна 5	m ₅	ΚΓ	25	28	30	32	30	28	26	25	28	30	25	30
Сила полезного сопротивления	Pnc	кН	0,75	0,8	0,9	0,7	0,6	0,6	0,65	0,7	0,75	0,8	0,8	0,9

Примечание: 1. масса кривошипа m₁=3 кг;

2. центры масс звеньев 2, 3 и 4 лежат на их серединах;

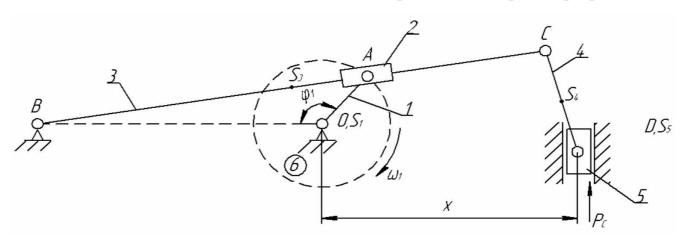
3. центральные моменты инерции звеньев 2, 3 и 4 определить по формуле:

 $J_{Si} = 0, 1 \cdot m_i \cdot l_i^2 (\kappa \Gamma \cdot M^2).$



Параметры	Обо-	Раз-		6	15		305	Но	мера варі	антов и	нисловые	значения	парамет	ров				27	100
	зна-	мер-	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
	чение	ность																	
Длина кривошипа	$\lambda_{\scriptscriptstyle \mathrm{OA}}$	M	0,1	0,12	0,1	0,12	0,14	0,12	0,1	0,12	0,14	0,11	0,1	0,12	0,12	0,1	0,12	0,14	0,15
Длина стойки	λ_{OB}	M	0,3	0,36	0,28	0,35	0,4	0,3	0,25	0,3	0,35	0,3	0,25	0,3	0,35	0,3	0,4	0,4	0,5
Длина кулисы	$\lambda_{\scriptscriptstyle \mathrm{BC}}$	M	0,5	0,6	0,5	0,6	0,5	0,5	0,5	0,5	0,6	0,5	0,5	0,5	0,6	0,5	0,6	0,6	0,7
Длина шатуна	$\lambda_{\scriptscriptstyle{ ext{CD}}}$	M	0,25	0,3	0,25	0,25	0,3	0,3	0,3	0,25	0,3	0,25	0,28	0,3	0,32	0,3	0,28	0,3	0,32
Ордината	h	M	0,3	0,35	0,3	0,35	0,2	0,3	0,3	0,3	0,4	0,3	0,4	0,3	0,3	0,3	0,3	0,25	0,3
Частота вращения кривошипа	n ⁻¹	МИН ⁻¹	71	72	68	74	72	72	70	75	65	80	82	84	74	80	78	80	80
Массы	m ₃	КГ	18	20	19	21	17	16	18	18	20	18	16	17	20	16	19	20	22
звеньев:	m ₅	КГ	40	50	60	40	50	60	40	50	60	40	50	60	40	50	60	40	50
Сила сопротивлени я	P _c	кН	0,8	1,0	0,9	1,1	1,2	1,0	0,8	0,9	1,2	1,1	1,0	0,8	1,0	1,2	1,1	1,2	1,0
Обобщенная координата	φ_1	град.	0	30	45	60	120	135	150	180	0	30	120	60	135	150	180	30	45

Примечания:


- 1. центры масс звеньев 3 и 4 лежат на серединах;
- 2. масса кривошипа 1-5 кг, а шатуна 4-10 кг;
- 3. центральные моменты инерции звеньев 3 и 4 определить по выражению: I_{Si} =0,1 $m_i \cdot l_i^2$ (кг · м²).

Задание № 9 Анализ плоского шестизвенного механизма долбежного станка.

	Обо-	Раз-					Ном	ера вариа	нтов и чі	исловые з	значения	параметр	ОВ				
Параметры	зна- чение	мер- ность	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Длина кривошипа	λ_{OA}	M	0,2	0,22	0,24	0,26	0,28	0,3	0,2	0,21	0,23	0,25	0,27	0,29	0,22	0,24	0,25
Длина стойки	λ_{OB}	M	0,6	0,5	0,6	0,5	0,6	0,7	0,5	0,6	0,7	0,5	0,6	0,7	0,5	0,6	0,7
Длина кулисы	$\lambda_{ ext{BF}}$	M	0,9	0,8	0,9	0,8	0,9	1,0	0,8	0,9	1,0	0,8	0,9	1,0	0,8	0,9	1,0
Длина рычага кулисы	$\lambda_{\scriptscriptstyle BC}$	M	0,6	0,5	0,6	0,5	0,6	0,6	0,4	0,6	0,6	0,4	0,6	0,6	0,4	0,6	0,6
Длина шатуна	$\lambda_{\scriptscriptstyle{ ext{CD}}}$	M	0,5	0,6	0,5	0,6	0,5	0,6	0,5	0,6	0,5	0,6	0,5	0,6	0,5	0,6	0,6
Обобщенная координата	ϕ_1	град.	90	120	150	210	240	270	90	120	150	210	240	270	90	120	150
Угловая скорость кривошипа	ω_1	C-1	10	12	14	16	18	20	10	12	14	15	18	20	10	12	15
Масса кривошипа	m ₁	КГ	1,5	1,7	1,6	1,5	1,6	1,8	1,5	1,6	1,7	1,8	1,5	1,6	1,8	1,4	1,5
Масса кулисы	m_3	КГ	4,5	5,2	5,0	4,5	5,0	6,0	5,5	5,5	6,0	6,0	5,0	5,2	6,0	5,0	6,0
Масса шатуна	m ₄	КН	2,0	2,5	3,0	2,0	2,5	3,0	2,0	2,5	3,0	3,0	2,5	3,0	3,0	2,5	3,0
Масса ползуна	m ₅	КГ	3,0	3,5	4,0	3,0	3,5	4,0	3,0	3,5	4,0	3,0	3,5	4,0	3,0	3,5	4,0
Сила полезного сопротивления	Рпс	Н	220	240	250	260	280	200	220	240	250	260	280	200	250	260	280

Задание № 10 Анализ плоского шестизвенного механизма вертикального транспортера.

	Обо-	Раз-				Номера вариантов и числовые значения параметров									
Параметры	зна- чение	мер- ность	1	2	3	4	5	6	7	8	9	10	11	12	
Длина стойки	1 _{ов}	M	0,5	0,55	0,6	0,65	0,6	0,7	0,75	0,5	0,55	0,6	0,65	0,6	
Длина кулисы	$l_{\scriptscriptstyle BC}$	M	0,9	1,0	1,1	1,2	1,0	1,2	1,4	0,95	0,9	1,0	1,2	1,15	
Длина шатуна	$l_{\scriptscriptstyle \mathrm{CD}}$	M	0,4	0,45	0,5	0,5	0,55	0,6	0,6	0,45	0,5	0,5	0,6	0,5	
Длина кривошипа	l_{oa}	M	0,1	0,12	0,14	0,15	0,12	0,15	0,15	0,12	0,12	0,14	0,15	0,12	
Расстояние до направляющей	X	M	0,45	0, 5	0, 6	0,6	0,45	0,6	0,6	0,4	0,5	0,5	0,6	0,6	
Обобщенная координата	ϕ_1	град	90	135	150	210	240	90	135	150	210	240	135	150	
Угловая скорость кривошипа	ω_1	c-1	8	6	5	8	10	8	6	5	8	6	5	10	
Массы звеньев:											3				
Кулисы	m ₃	КГ	12	13	14	12,5	11	14	15	12,5	14	14,5	12,5	14	
Шатуна	m ₄	КГ	6	7	8	6	5	7	8	6,5	7,5	8	5,5	7	
Ползуна	m ₅	КГ	4	5	6	4,5	3	4,5	6	4,5	5	5,5	4,5	4	
Сила сопротивления	P _c	кН	0,6	0,4	0,5	0,6	0,5	0,4	0,6	0,7	0,6	0,4	0,5	0,6	

Примечание: 1. масса кривошипа m_1 =2 кг;

2. центры масс звеньев 3 и 4 лежат на их серединах; 3. центральные моменты инерции кулисы 3 и шатуна 4 определить по формулам:

 $J_{S3} = 0, 1 \cdot m_3 \cdot l_{BC}^2 (K\Gamma \cdot M^2)$ $J_{S4} = 0, 1 \cdot m_4 \cdot l_{CD}^2 (K\Gamma \cdot M^2)$